Black Hole, Gottlieb Pinball Machine (1981)

Location: Littleton, Colorado.
Symptoms: Overall tune up, spinning disk in backbox not working.

I didn’t get many photos of this machine.  The owner was expecting a house showing and I was trying to get everything finished before the realtor came.

The machine needed a lot of little things fixed, everything from loose ball guides, rubber pieces, bad bulbs, broken bumper caps, broken bumper body, and drop targets.  The machine had too many balls installed in it which caused problems with the outhole and the eject mechanism to the shooter lane. This era of Gottlieb machines can only hold 3 balls in the trough.

Lower playfield

Lower playfield after cleaning and replacing broken pop bumper.

This machine needed a new motor for the spinning disk behind the backglass.  The parts needed to replace these motors are (as of 4-4-2014):

Quantity Description Supplier
1 3 RPM Gear Motor, part no. 638158 Servo City
1 0.770” Set Screw Hub for 6 mm shaft, part no. 545576 Servo City
1 0.770” to 0.625” hub adapter, part no. 545456 Servo City
4 Socket Head Cap Screw 6-32 x 1/4” Servo City
or hardware store
1 Machine Screw M3 x 6 mm Servo City
or hardware store
1 #4 lock washer, split or internal star Servo City
or hardware store

The hub mounts to the motor, the hub adapter mounts to the hub with the socket head cap screws, and the motor mounts to the machine with the M3 screw. The screw holes in the front of the motor don’t align with the existing bracket, so I only used a single screw with a lock washer to mount the motor. It seemed sturdy enough.

The existing black flat-head screws that hold the disk to the old gear motor are reused to mount the disk to the hub adapter.

I attached a connector to the new motor and plugged it into the existing connector on the wire harness. I connected the polarity to spin counter-clockwise. Everything worked great!

I was recently at the Texas Pinball Festival and saw two Black Hole pinball machines and neither had working motors. It seems to be a common problem.

Underside of main playfield

Underside of main playfield

Gottlieb System 80B Pinball Machines, Voltage Adjustment

Tip: When adjusting the 5 volt supply on a Gottlieb Systems 80B pinball machine, adjust it to 5.00 volts or lower, but not below 4.85 volts.

The reason for this is the poor design of the Memory Protect circuit, located on the CPU board.  There is a 3V zener diode (VR1) located on the CPU board that will start getting hot and fail if the supply voltage goes above 5.0 volts.

Zener diode with a bulge and crack along right side.

Zener diode (VR1) with a bulge and crack along right side.

Although the failed zener diode shown above was still basically working, I suspect it was acting intermittently, causing the CPU board to freeze up. Regardless, a bulging and cracked diode shouldn’t be trusted.  This was from a machine where the 5 volt supply was adjusted over 5.00 volts  (5.12 volts).

Also, the 5 volt adjustment pot on the power supply should be replaced with a fixed resistor.  The pot will get dirty and become sensitive to vibration, causing voltage fluctuations.   The best thing to do is adjust it for 5 volts, de-solder the pot from the circuit board, measure the resistance, and replace it with a fixed resistor or a combination of fixed resistors to obtain an equivalent resistance.

 

 

Spy Hunter Pinball Machine, Bally (1984)

Symptom: Cheap Squeak sound board blowing fuses.

I had another person send me their Cheap Squeak board from their Spy Hunter pinball machine after it was blowing fuses. Compared to last time, it was much easier to identify where the short was located. Both C10 and C22 capacitors were shorted.

Shorted capacitors.

Shorted capacitors.

Tantalum capacitors were used for both C10 and C22, and a variety of other locations on the sound board. Although tantalum capacitors don’t age like aluminum electrolytic capacitors, they have a weakness: they don’t tolerate voltage spikes very well (nor reverse polarity, where they will likely explode).

Both C10 and C22 are located on the unregulated 12 Volt supply.  This supply normally runs a little higher, and since it’s unregulated can have voltage spikes on it.  So if your Cheap Squeak is blowing fuses, replace both of these capacitors.  The original caps were rated at 25 volts, but I use either a 35 volt or a 50 volt for a replacement to make them more resistant to voltage spikes.  The value is 4.7uF.

The other tantalum capacitors on the board should be fine since they are downstream from the 5 volt regulator and it’s very unlikely a voltage spike would get that far. They should last forever.

Also note that aluminum electrolytic capacitors have the minus “-” side identified on them and tantalum capacitors have the positive or “+” identified on them.  The circuit board has only “+” polarity identified for all capacitors regardless of type.  So double check the polarity of the capacitors before soldering them.

 

Disco Fever Pinball Machine, Williams (1978)

Location: Windsor, Colorado
Symptoms:  Wouldn’t boot.

The owner didn’t realize there were batteries in the backbox.  And of course they were leaking.  I removed the battery holder from the board and fortunately the board hadn’t been damaged by the alkaline. I replaced the RAM chip with an AnyPin NVRAM module so that forgotten batteries wouldn’t be an issue again.

The machine booted up fine after that.  I did a quick “shop” job on the machine, replacing rubber rings, burned out lamps, and cleaning the playfield.  There is a broken pop bumper cap, but I am unable to find an exact replacement.

Pop bumpers, with target in the center and arrows/triangles around edge.

Pop bumper caps, with target in the center and arrows/triangles around edge.

 

Spy Hunter Pinball Machine, Bally (1984)

Location: Lone Tree, Colorado

The owner had done some previous work on the sound board because it was blowing fuses.

When replacing capacitors, diodes, and ROMs, always double check the polarity.

When replacing capacitors, diodes, and ROMs, always double check the polarity.

Backwards ROMs.  The notch in end edge of the ROM chip should align with the notch in the socket and silkscreen image on the board.

Backwards ROMs. The notch in end edge of the ROM chip should align with the notch in the socket and silkscreen image on the board.

I determined that the 6803 controller was bad, as well as one of the ROMs.

Diodes across coils on solid state pinball machines

I read so much false information on pinball related sites when it comes to technical electronic information.  Even on sites such as Pinwiki and Pinside there is usually about 50% to 70% misinformation.  These people state these false facts with such authority.  I worry about the people who believe it. (But hey, this is the internet.  You have to take everything you read with a grain of salt.)

I should start a regular feature here called False Facts.

Today’s false fact: Diodes are connected to flipper coils to help them release faster.

Actually, it’s just the opposite.  The flippers would release faster if the diodes were removed.  I’ll explain why in a second.  But first, don’t even think about removing your diodes to improve flipper response.

The diodes are there to suppress the voltage that is generated when the magnetic field of the coil collapses, after the power is removed from the coil.  This applies to coils that are powered by a DC voltage, which would be all solid state machines and a few of the later EM machines.

OK. So here is the slow motion version of what’s happening.  You press the flipper button and power is applied to the coil. Actually there are two windings in the coil, one strong one for “pull-in”, and a weaker one for “hold”, but just pretend for this discussion there is only one.  In most machines, the flipper button is in the ground circuit of the coil. The power supply voltage passes through the coil, through the switch, to ground. The magnetic field builds up and pulls in the plunger.  This takes a little bit of time, maybe 20-50 milliseconds (I’ve never measured it on a flipper coil).

(This is simplified.  Usually there is also a relay involved to keep the flippers off when the machine isn’t playing a game.  And the Williams Fliptronic system adds quite a bit more complexity to the scenario.  I’m going to omit the phase relationships between voltage and current. I’m also going to refer to current flow from positive to negative.)

A regular diode allows the current to flow in only one direction, like a one-way check valve. When the coil is energized, there is no current flow through the diode because the current is going in the opposite direction for which the diode is installed.  If you were to turn the diode around, all of the current would flow through the diode and not the coil, causing a short and likely burning up the diode. So at this point the diode is invisible to the coil.

As long as current is flowing though the coil, a magnetic field is maintained.  When you release the flipper button, power is removed from the coil.  But due to a variety of factors, including the plunger being inside the coil, it takes a little bit of time for that magnetic field to collapse. As the magnetic field collapses, it generates a current in the coil in the opposite direction that was used to create the magnetic field.  So for a brief time, the current starts running backwards.  Since it’s now going in the opposite direction, it goes though the diode to the other side of the coil causing a momentary short across the coil.  This short dissipates the power until the magnetic field is gone and the plunger is released.  But the point is, for a brief time, there is still current flowing in the circuit, through the diode, after the button is released and a magnetic field is still holding the plunger.

If the diode was removed, the magnetic field collapses, but there is no current flow because there is open circuit and no place for the electrons to go. Instead the voltage keeps rising and rising across the coil until it arcs across the switch contacts or sends a big voltage spike into the rest of the pinball machine. (This is basically how sparks are created across spark plugs in your engine.)

But since there is no current flow (very little anyway) the magnetic field goes away faster and the plunger releases faster.  But as mentioned, the downside is a voltage spike, which can cause havoc in a solid state machine.

So that is why the diodes are installed across every coil in the pinball machine, to reduce the voltage spikes.

There are no diodes in EM machines because they are running on AC instead of DC.  The voltage is lower to begin with and the coils not as strong, there isn’t much of a spike.  But it could be suppressed with a resistor and capacitor across every coil (called a snubber).

Now… there is a way to decrease the release time of flippers, but I’ve not tried it.  And I’m not sure how noticeable it would be and don’t recommend it. Replace each regular diode with two zener diodes in series, back to back (opposite polarity).  The diodes would need to be rated at the maximum voltage seen by the flipper coils (about 70V for a 50V system) and a current rating of 2-3 amps. A voltage spike will still be generated, but it will be a bit more controlled and may still cause havoc with a solid state machine.  This is how fuel injectors in an engine are handled (essentially a coil and a plunger, just like a flipper) and those are switching on and off at a very rapid rate.

Medusa Pinball Machine (Bally, 1981), LED upgrade

Most pinball LED’s that I’ve come across are not compatible with the early Bally solid state pinball machines from 1979 to 1985.  These machines use a lamp driver board, where each controlled lamp is driven by a silicon control rectifier (SCR), which is also known as a thyristor. Bally’s Medusa falls into this category.

An LED installed into a Bally of this vintage will flicker or not work at all.  The problem can be overcome with a 1000 ohm (1K) resistor in parallel with the LED.  The reason for the flicker is somewhat technical and is explained below.

Some people opt to solder a resistor across every lamp socket.  This isn’t too much of a problem if the number of lights is not high.  Medusa has over 80 controlled lights and that would be a lot of work, especially on the hard to get at sockets.

Since one side of each lamp is common to all of the others, a pull-up type resistor network can be used.  Also, since the connector pin spacing on the lamp driver board is 0.100″, this is a perfect match for using though-hole resistor networks because the pin spacing is the same.

Rear of Lamp Driver board showing resistor networks (pullups) installed.

Rear of Lamp Driver board showing resistor networks (pullups) installed.  Click for larger.

The resistor networks were laid horizontally next to the lamp output pins on the reverse side of the board (the view from the front of the board is unchanged and you’d never know the resistor networks are there).  The common pin from each network was bent up vertically where a wire connected all of them together (blue wire in the above photo).  The blue wire was routed through a single pin connector to the lamp common on the backboard. The single pin connector allows the driver board to be removed from the backbox.

Another nice thing about doing it this way, as opposed to putting a resistor on every socket, is if the machine is ever sold and the new owner (a purist) wants to switch back to regular #47 incandescent lamps, the resistor networks can easily be removed from the back of the circuit board (though incandescent lamps will work perfectly if the resistor networks remain in place).

On Medusa, there is a light bar at the top of the playfield.  It was decided to leave those as incandescent lamps. A LED can turn off and on faster than an incandescent bulb, and I think with today’s bright LED’s and the fact they are aimed right at the player, the flashing would be a bit too much.  Aside from that, all controlled lamps and general illumination on the playfield and backbox were replaced with LED’s.

Playfield with all LED lighting (except for row of red lights at the very top).  Click for larger.

Playfield with all LED lighting (except for row of red lights at the very top). Warm white LEDs were used for under playfield plastics. New translucent polyurethane flipper rubbers were used on the illuminated flippers. Click for larger.

Backgox LED lighting, with a mixture of warm white, cool white, and red LEDs for the eyes.

Backgox LED lighting, with a mixture of warm white, cool white, and red LEDs for the eyes.

Side LED's from Cointaker.com were used in places like the Gorgon rollover switches.

Side LED’s from Cointaker.com were used in places like the Gorgon rollover switches.

 

I’m not totally sold on the idea of upgrading older machines with LEDs, but all in all, I think it’s an improvement for Medusa.

Continue reading

Hurricane Pinball Machine (Williams, 1991)

Location: Littleton, CO
Symptoms: Sound problems, ferris wheel getting stuck, backboard spinner not working, backboard and playfield G.I. lights not working.

One of the ferris wheels was binding causing the belt to slip. I loosened the belt from below and spun both wheels.  One turned freely, the other did not.  I removed the e-clip, a washer and cleaned the shaft of sticky lubrication. The problem seemed to be the washer, which was too thick and causing to much friction when the e-clip was on.  I also noticed that the other wheel didn’t have washer, so I left it off.

The sound kept cutting in and out after the machine warmed up.  It would be on for a half-second, off for a half-second, repeat.  I pulled out my oscilloscope and checked the inputs to the amplifier. The input signal looked fine.  I disconnected the speaker and bypassed the digital volume control just to make sure the problem was with the amp IC. It seemed it was definitely the amplifier IC.

The backboard spinner wasn’t working.  It seemed like it was jammed.  I took the motor off of the back and shot some lubricant into the gear box.  That seemed to get it working again.  For how long, I don’t know.  The owner declined to replace the motor and gearbox assembly.

The playfield lighting problems were related to a burnt connector, which I see all of the time.  I replaced both the PCB connector and the wire connector and the lighting is now working great.

I took the sound board back with me since I didn’t have an amplifier IC with me.  A few days later, I shipped the repaired board back to the owner, who installed it and said it’s working perfectly!

 

AC/DC Pinball Machine (Stern, 2012)

Location: Denver, Colorado.
Symptoms: Ball getting stuck at ball flap.

From talking to people who buy brand new machines, it’s not uncommon to spend some time getting it to work right.  This was my second visit to this machine.

The first visit, which I don’t think I posted, involved replacing the canon motor, filing the bushings on the bell, and getting the lock-down bar to lock.  I guess there is not any quality assurance inspection after the pinball machine leaves the production line.  The things I fixed were very obvious problems.

This visit was for a problem that wasn’t very obvious.  The ball would occasionally get stuck at the ball flap in the upper right of the playfield. After unsuccessfully trying to get the ball stuck, I resorted to just using my fingers to discover there was an electrical wire hanging down that was catching on the ball. I couldn’t see the wire, but I could feel it.

I bent the wire out of the way and the everything seemed to work fine.

acdc-0480

Black Knight Pinball Machine (Williams, 1980)

Location: Fairplay, Colorado (home of South Park).
Symptoms: Speech only, but no background sound; Multi-player bonus round not working; Some drop targets not resetting.

I tackled the sound problem first.  When I started the game the speech was working fine, but the background sound effects were not there.  I checked the connections to the speech board.  On this era of Williams machine, the analog sounds leave the main sound board and go to the adjacent speech board, where the analog sound and speech are mixed together.  Then the sound travels back to the main sound board for amplification and then to the speaker.

The connections were all good.  I disconnected the speech board and jumpered W1.  This will send the analog sounds directly to the amplifier, bypassing the speech board.  Still nothing.

With my oscilloscope, I could see the sound coming out of the digital to analog converter (IC13). From there it goes to a transistor (Q2) which acts as a current to voltage converter.  The transistor was acting like it wasn’t connected. I pulled it from the circuit and tested it with my meter and determined the transistor was bad (normally they short when failed, but this one was open).

D/A converter with Q2 transistor.

D/A converter with Q2 transistor.

I replaced the transistor, and for the first time in 5 years it made sound!

Next, I decided to check the drop targets.  A couple of the drop targets in the middle bank would pop up during reset, but would not stay there. This turned out to be a missing screw that held part of the assembly together.  I found the screw in the coin box and reinstalled it.

Next, I noticed problems with other switches in the matrix.  I removed the balls from the machine and ran the switch diagnostics.  It showed that switches 5, 13, 21, 29, 37, and 45 were all closed. They all share the same row (White/Green Row 5). so it looked like they were shorted to ground someplace.  To isolate whether the problem was in the machine wiring or with the driver board circuit, I unplugged 2J3.  The diagnostic still showed the switch row shorted to ground.  IC16 was bad.

The shorted switch row was the reason the multi-player bonus round was not working.  One of the switches in that row is the shooter lane, so the machine always thought there was already a ball there and wouldn’t deliver another to the shooter lane.

The switches all worked once IC16 was replaced.  Next I solved some minor connection issues with the flippers and G.I. lighting.  The Black Knight was ready for battle again!

 

Fairplay, CO, aka South Park. Cartman's face is missing.

Fairplay, CO, aka South Park. Cartman’s face is missing.